276 research outputs found

    Le théorème des zéros pour les variétés analytiques réelles de dimension 22

    Full text link

    Detecting multipartite entanglement

    Get PDF
    We discuss the problem of determining whether the state of several quantum mechanical subsystems is entangled. As in previous work on two subsystems we introduce a procedure for checking separability that is based on finding state extensions with appropriate properties and may be implemented as a semidefinite program. The main result of this work is to show that there is a series of tests of this kind such that if a multiparty state is entangled this will eventually be detected by one of the tests. The procedure also provides a means of constructing entanglement witnesses that could in principle be measured in order to demonstrate that the state is entangled.Comment: 9 pages, REVTE

    The Łojasiewicz exponent over a field of arbitrary characteristic

    Get PDF
    Let K be an algebraically closed field and let K((XQ)) denote the field of generalized series with coefficients in K. We propose definitions of the local Łojasiewicz exponent of F = ( f1, . . . , fm) ∈ K[[X, Y ]]m as well as of the Łojasiewicz exponent at infinity of F = ( f1, . . . , fm) ∈ K[X, Y ]m, which generalize the familiar case of K = C and F ∈ C{X, Y }m (resp. F ∈ C[X, Y ]m), see Cha˛dzy´nski and Krasi´nski (In: Singularities, 1988; In: Singularities, 1988; Ann Polon Math 67(3):297–301, 1997; Ann Polon Math 67(2):191–197, 1997), and prove some basic properties of such numbers. Namely, we show that in both cases the exponent is attained on a parametrization of a component of F (Theorems 6 and 7), thus being a rational number. To this end, we define the notion of the Łojasiewicz pseudoexponent of F ∈ (K((XQ))[Y ])m for which we give a description of all the generalized series that extract the pseudoexponent, in terms of their jets. In particular, we show that there exist only finitely many jets of generalized series giving the pseudoexponent of F (Theorem 5). The main tool in the proofs is the algebraic version of Newton’s Polygon Method. The results are illustrated with some explicit examples

    Tameness of holomorphic closure dimension in a semialgebraic set

    Full text link
    Given a semianalytic set S in a complex space and a point p in S, there is a unique smallest complex-analytic germ at p which contains the germ of S, called the holomorphic closure of S at p. We show that if S is semialgebraic then its holomorphic closure is a Nash germ, for every p, and S admits a semialgebraic filtration by the holomorphic closure dimension. As a consequence, every semialgebraic subset of a complex vector space admits a semialgebraic stratification into CR manifolds satisfying a strong version of the condition of the frontier.Comment: Published versio

    Maximum Block Improvement and Polynomial Optimization

    Full text link

    Monotone functions and maps

    Full text link
    In [S. Basu, A. Gabrielov, N. Vorobjov, Semi-monotone sets. arXiv:1004.5047v2 (2011)] we defined semi-monotone sets, as open bounded sets, definable in an o-minimal structure over the reals, and having connected intersections with all translated coordinate cones in R^n. In this paper we develop this theory further by defining monotone functions and maps, and studying their fundamental geometric properties. We prove several equivalent conditions for a bounded continuous definable function or map to be monotone. We show that the class of graphs of monotone maps is closed under intersections with affine coordinate subspaces and projections to coordinate subspaces. We prove that the graph of a monotone map is a topologically regular cell. These results generalize and expand the corresponding results obtained in Basu et al. for semi-monotone sets.Comment: 30 pages. Version 2 appeared in RACSAM. In version 3 Corollaries 1 and 2 were corrected. In version 4 Theorem 3 is correcte

    Generic Global Rigidity in Complex and Pseudo-Euclidean Spaces

    Get PDF
    In this paper we study the property of generic global rigidity for frameworks of graphs embedded in d-dimensional complex space and in a d-dimensional pseudo-Euclidean space R2^{2} with a metric of indefinite signature). We show that a graph is generically globally rigid in Euclidean space iff it is generically globally rigid in a complex or pseudo-Euclidean space. We also establish that global rigidity is always a generic property of a graph in complex space, and give a sufficient condition for it to be a generic property in a pseudo-Euclidean space. Extensions to hyperbolic space are also discussed.Engineering and Applied Science

    Uniqueness of Bessel models: the archimedean case

    Full text link
    In the archimedean case, we prove uniqueness of Bessel models for general linear groups, unitary groups and orthogonal groups.Comment: 22 page
    corecore